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Abstract. Algorithmic music composition has long been in the spotlight
of music information research and Long Short-Term Memory (LSTM)
neural networks have been extensively used for this task. However, de-
spite LSTM networks having proven useful in learning sequences, no
methodology has been proposed for learning sequences conditional to
constraints, such as given metrical structure or a given bass line. In this
paper we examine the task of conditional rhythm generation of drum
sequences with Neural Networks. The proposed network architecture is
a combination of LSTM and feed forward (conditional) layers capable
of learning long drum sequences, under constraints imposed by metrical
rhythm information and a given bass sequence. The results indicate that
the role of the conditional layer in the proposed architecture is crucial
for creating diverse drum sequences under conditions concerning given
metrical information and bass lines.
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1 Introduction

Attempting to imitate human creativity has long been an interesting direction
for computer scientists. Music has received significant attention in relation to
other arts such as graphical arts, painting, dance, or architecture due to its
rigorous formalisation, available from the early stages of its evolution [19]. The
work of Hiller and Isaacson [7], on the composition of a musical piece using a
computer program, was published as early as shortly after the introduction of
the very first computer.

Among numerous definitions of Algorithmic (or Automatic) Music Compo-
sition (AMC) [23/10], D. Copeﬂ provided an interesting alternative, “a sequence
(set) of rules (instructions, operations) for solving (accomplishing) a [particular]
problem (task) [in a finite number of steps] of combining musical parts (things,
elements) into a whole (composition)” [20].

AMC is a complex problem with tasks ranging from melody and chords’
composition to rhythm and lyrics, among others [2]. Its applications include
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varying degrees of combination of computational creation (e.g. fully automated
background /harmonisation music or assisted co-composition) with humans’ cre-
ativity for the production of musical works. AMC has been approached with a
plethora of methods from various points of view.

Artificial Neural Networks (ANNs) acted as an extra powerful computation
tool to extend the available methods which are usually probabilistic models. A
number of research works have been published using ANNs and, especially lately,
Deep Learning architectures for composing music (e.g. [6/I3]) and most of these
are using LSTM layers.

Recurrent neural networks, especially LSTM networks, have been utilized
for music generation (see [22] for further references), since they are capable of
modeling sequences of events. However, hitherto proposed architectures focus
on the generation of sequences per se, without considering constraints. For in-
stance, the performance of human drummers is potentially influenced by what
the bass player plays. Additionally, human drummers could play drums on a
time signature they have never played before, e.g. 15/8, by utilising the knowl-
edge they have obtained only by practicing (learning) 4/4 beats; this happens
because human drummers have an a priori understanding of metric information
which helps them perform drum rhythms on meters they have never seen be-
fore. In this work, we propose the combination of different neural network layers,
i.e. feedforward and recurrent, for composing drum sequences based on external
information, i.e. metric and bass information.

The remainder of this paper is organised as follows: Section [2| presents back-
ground information and existing research on Automated Musical Composition
and related notions. Next, Section 3| presents the proposed combination of LSTM
and Feed Forward Neural Networks for conditional rhythm composition. Section
details the experimental evaluation of the proposed method, while the work is
concluded in Section [

2 Related Work

Algorithmic Musical Composition refers to the the type of creativity that does
not focus on “flash out of the blue”, as would be the result of inspiration or
genius, but a process of incremental and iterative revision, more similar to hard
work [I0] in the post-digital computer age. Artificial neural networks (ANNs)
have long been utilised for the purposes of automated compositiorﬂ Their ex-
tended use in AMC is due on the capability of ANNs to resemble human creative
activities despite the expensive training required in order to do so.

A very common version of ANNs is the feedforward ANN, which include
neurons/units that are commonly divided in three types of layers: input, hidden,
and output. Units between different layers are interconnected by weights that are
multiplied with the values of their respective input unit. The resulting output
is then propagated to a transfer function through units to the output unit. The
“learning” procedure of feedforward ANNSs refers to their ability to modify the
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connecting weights for producing output that optimally matches known target
values (supervised learning), by minimising the error within a threshold. Recur-
rent Neural Networks (RNNs) on the other hand, have a similar architecture but
the hidden layers are more sophisticated, including recurrent connections for re-
membering past events. RNNs have been extensively utilised for AMC purposes
such as generation of chord sequences [I5] and melodies [I8].

Long Short-Term Memory (LSTM) is a form of RNN initially proposed by
Hochreiter and Schmidhuber [§]. Following the principles of RNNs, LSTM net-
works are generic in the sense that given adequate network units, LSTMs allow
for any conventional computation. In contrast to RNNs, LSTMs are more suited
to learning from experience to classify, as well as to processing and predicting
time-series, when there are time lags of unknown size and bound between im-
portant events. LSTMs feature relative insensitivity to gap length, thus being
advantageous to alternative forms of RNNs or hidden Markov models. Accord-
ingly, LSTMs have been utilised for AMC purposes such as learning chord pro-
gressions [B], drum progressions [2] and learning generic percussion tracks [14]
as well as creating musically-appealing four-part chorales in the style of Bach [0]
and folk tunes [22].

One of the key advantages of applying ANNs for ACM is the lack of re-
quirement for a priori knowledge, such as rules, constraints, of the domain since
ANNSs learn through the examination of input examples. Nevertheless, ANNs’
application in AMC is not without drawbacks, namely the diminished capabil-
ity of mapping input sequences to output higher-level features of music and the
difficulty of generalisation related to the input examples’ size [20].

3 Conditional Rhythm Composition with LSTM and
Feed Forward Neural Networks

In this paper we introduce an innovative architecture for creating drum sequences
by taking into account the drum generation of previous time steps along with the
current metrical information and the bass voice leading. Section [3.1] describes the
collection and preprocessing methodology for the training data, while Section (3.2
presents the model’s architecture.

3.1 Data Representation

The utilised corpus consists of 45 drum and bass patterns with 16 bars each, in
4/4 time signature from three different rock bands. All the pieces were collected
manually from web tablature learning sources E| and then converted to MIDI
files by keeping the drum and bass tracks only. For each track, we selected a
characteristic 16 bar snippet which is usually detected on the chorus part of
a rock song. The selection was done with the help of a student of the Music
Department of the Ionian University, Greece.

We used two different input spaces to represent the training data and feed
them to two different two different types of ANNs, that are afterwards merged
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into a common hidden layer. The first one, an LSTM network, corresponds to the
drum representation while the second one, the feedforward network, represents
information of the bass movement, and the metrical structure information.

As far as the drums were concerned, their representation was based on text
words, as proposed by [2] with the following alterations. To encode simultaneous
events in a track into texts, we used the binary representation of pitches, i.e.,
standard components of drums - kick, snare, hi-hats, cymbals and toms. We also
limited the number of events in a bar to 16 by quantising every track to the closest
16th-note. This process lead to 256 word music events for each learning input.
Due to the limited training data, and for efficient representation and learning,
only five components were retained; kick, snare, any tom event, open or closed
hi-hats, and crash or ride cymbals. For example, 10010 and 01010 represents a
time step with simultaneous playing of kick and hi-hat followed by simultaneous
playing of snare and hi-hat. There can be theoretically 2° = 128 words, but
there are indeed much fewer, since the combinations of drum components that
are actually played are limited.

Moving on to the bass, we use information regarding the voice leading (VL)
of bass (which has proven a valuable aspect in harmonisation systems [17], [9]).
Specifically, VL. was defined by calculating the pitch difference of the bass be-
tween two successive time steps, representing this information in a 1x4 binary
vector. The first digit of this vector declares the existence of a bass or rest event,
while the three remaining digits show the calculation of the bass voice leading
in the following 3 different cases: [000] steady VL, [010] upward VL and [001]
downward VL. For example, if the bass pitch from 42 changes successively to 35,
then to 40 and finally to a rest, the Bass VL vectors occurring are [1001], [1010]
and [0000].

In addition to the bass information we included a 1x3 binary vector repre-
senting metrical information for each time step. This information ensures that
the network is aware of the beat structure at any given point. Considering the
simple beat structure (resolution of 16ths and 4/4 time signature) of the exam-
ined examples, the first digit declares the start of a bar, the 2nd of half-bar,
and finally the 3rd of quarter bar. So for example the first 9 time steps of a
sequence could be translated to metrical information as: [111], [000], [000], [000],
[001], [000], [000], [000], [011]. This representation can be arbitrarily expanded
or modified to reflect additional or other information. For instance, a 4th digit
can be included that indicates, e.g., the beginning of the chorus. Additionally,
the second and third digits can be used for representing beat accents rather
than beat positions. For instants, different binary representations can be used
for denoting two different accentuation patterns in 7/8 time signature, e.g., 4-3
and 3-2-2. The examination of such possibilities is left for work.

3.2 Proposed Architecture

The proposed architecture consists of 2 separate modules for predicting the next
drum event. An LSTM module learns sequences of consecutive drum events,
while a feedforward layer takes information on the metrical structure and bass



movement. The output of the network is the prediction of the next drum event.
We used the Theano [1] deep learning framework and Lasagne [3] library. Figure
shows a diagram of our proposed architecture.
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Fig. 1: Proposed Deep Neural Network Architecture for Conditional Drum Gen-
eration.

For the drum input space we used 2 stacked LSTM layers with 128 or 512
Hidden Units and a dropout of 0.2, similarly to [25]. The LSTM layers have
16 time steps memory, which correspond to a full bar. Accordingly, the LSTM
attempts to predict the next step in a stochastic manner. In each prediction
for time index n, the network outputs the probabilities of every state. The bass
and metrical input space is then fed into the Hidden module on a dense fully
connected layer. Subsequently, a merge layer is used in order to take the output
of each module that is then passed through the softmaz nonlinearity to generate
the probability distribution of the prediction. During the optimisation phase,
the AdaGrad loss function [4] is calculated as the mean of the (categorical)
cross-entropy between the prediction and the target.

4 Results

The LSTM methodology has been used for generating sequences that reflect a
learned style, specifically using similar representations of rhythms as the one fol-
lowed herein. Since the aim of the conditional rhythm composition methodology
is to employ conditional information in a neural network fashion, our experimen-
tation focuses on the following questions:

1. Are the training and generation processes negatively affected by the intro-
duction of the feed forward (conditional) layer?

2. Does the feed forward (conditional) layer play any role in the rhythms gen-
erated by the system and if so, in what aspects?

3. How are the capabilities of the system affected when trained on datasets
with different characteristics?

To answer the aforementioned questions, simple examples of generated rhythms
were analysed, allowing the exploration of conditional layer’s impact. Then,
two larger-scale experiments are conducted where the features of composed and
“ground-truth” rhythms were compared, focusing on the role of the conditional



layer and the characteristics of different training scenarios, respectively. Those
experiments allowed a deeper view into what the proposed methodology achieves
and revealed the main weakness of related methodologies (including the proposed
one): their incapability to capture high-level structure; suggestions for future en-
hancements are proposed in the concluding section of the paper (Section .

In the following examples and experiments, 5 different networks were trained:

. PTNN: trained with 15 excerpts from the Porcupine Tree band.

. FloydNN: trained with 15 excerpts from the Pink Floyd band.

. QueenNN: trained with 15 excerpts from the Queen band.

. alINN15: trained with 15 excerpts in total — 5 randomly selected from each
aforementioned band.

5. allNN: trained with all 45 excerpts of the aforementioned bands.

N N

Especially for the experiments in Section [£:2] where the role of the conditional
layer was examined, a custom version of those networks is tested that does not
include the conditional layer, i.e. those networks were trained and generated
as typical LSTM networks without the conditional parts. Those networks are
marked with a “no” suffix, e.g. the “PTNN” without the conditional layer is
named as “PTNNno”.

4.1 Examples of Generated Rhythms

Figure 2| shows three different examples of drum generation of the alINN model
of two bars from a song of Queen which was not included on the training dataset.
Starting from bottom to top in the piano-roll drum depiction, we identify in the
following order kick, snare, toms, hi-hat and crash/ride events. According to
the Ground Truth of the example, the rhythm is very simple with a standard
pattern on kick snare and hi-hat events and a crash in the end of the first bar.
In addition the bass harmony is also simple with few onsets and large durations.

As shown in Figure [JJ's epoch progressions, the network is adjusted from
the early stages of learning. On epochl0 it is able to understand the metric
structure of the song and create simple and repeating drum patterns. Moving
forward on the training the network gives more complex generations. On epoch30
the generation is almost the same as the original with minor difference in some
additional cymbals (crash-ride) on the start and at end of the excerpt. At this
stage, the Condition Layer seems to contribute a lot on the generation, as evident
in the last example.

Then, we edited the bass track and replaced it with a complex playing with
several more onsets in total. The Conditional Layer acted accordingly, forcing
the network to create drum events which can follow this particular bass harmony.
This is evident in Figure (d) by the additional kick events created in both bars.

4.2 Training with vs. without the Conditional Layer

The characteristics of drums’ rhythms can be examined by extracting qualitative
features, similarly to the ones presented in [I1]. However, in order to extract such



(a) Ground Truth (b) 10 epochs
(¢) 30 epochs (d) 30 epochs with edited Bass

Fig. 2: Piano Roll drum generation samples of the proposed network.

features the representation of rhythms requires transformation in a compatible
representation, where only three basic drum elements are included: hi-hat, snare
and kick drum (H, S and K). Since the current representation incorporates 5
elements, the snare and tom elements (rows) are merged into a single snare row,
the cymbals rows (hi-hat and crash) are mapped into a single hi-hat row while
the kick row remains as is.

Following the methodology found in [I1], 32 features were extracted (de-
scribed in Table , forming a vector representing each rhythm in the database,
r; = {fl(i), 2(1‘)7 . fé;)}, where 7 is the index of the rhythm; those features
incorporate the concepts of “density”, “syncopation” [21], “symmetry” [12] and
the “weak-to-strong” [11] ratios (measuring the ratios of the total intensities of
weak over the total intensities of distinctive events), in the distinctive beats of
the rhythm and in each separate percussive element (features 1-16). The dis-
tinctive beats of a rhythm are considered to be the beats in the snare or the
kick drum that exceed the 70% of the maximum intensity in this rhythm. Since
rhythms in this work are assumed binary, the distinctive beat simply describes
the locations of snare and/or kick, expressed as a 1-row binary array. Features
17-19 and features 24-26 capture simultaneous pairs and isolated onsets respec-
tively, while features 20-23 describe transition probabilities between the S and
K elements. The mean values and standard deviations of the intensities of each
percussive element are described in features 27-32. Since the examined rhythms
are excerpts of 16 bars, each rhythm is represented by an array of 32-16 = 512
values.

In order to examine the efficiency of the introduced conditional layer, 6
“ground-truth” pieces were used — two from each band (Porcupine Tree, Pink
Floyd and Queen) — none of which was included in the training sets. Both the sim-
ple LSTM and the conditional versions of all networks generated drum rhythms
with initial seeds given by the ground-truth pieces, while the conditional net-



Table 1: The employed drums’ features.

Feature indexes Feature description
1-4 density, syncopation, symmetry and weak-to-strong ratio of the dis-

tinctive beat

5-16 density, syncopation, symmetry and weak-to-strong ratio of each
drum element

17-19 percentages of simultaneous pairs of drums onsets (H-K, H-S and
S—K)

20-23 percentages of transitions between all combinations of K and S

24-26 percentages of isolated H, S or K onsets

27-32 intensity mean value and standard deviation for each drum element

works were also given the metrical and bass voice information of the ground-
truth. The compositions of each networks after every 5 epochs of training were
extracted until epoch 30. The features of every composition were then extracted
and mapped, along with the features of the ground truth rhythms, in two di-
mensions using the t-SNE [24] technique.

Figure [3| illustrates the 2D mapping of all features (ground-truth and com-
positions in all epochs by all network versions) with colors according to the 5
clusters assigned by k-means clustering [16]; this number of clusters was used
partially because of the fact that 5 different networks were trained and partially
because of the clarity of the provided results after experimentation with dif-
ferent cluster numbers. The assessment of the characteristics of each cluster is
performed by counting the occurrences of different training “keywords” in each
cluster, i.e., the trained network name and the training epochs that composed a
rhythm.

The aggregated keywords in each cluster are shown in Table [2] The cluster
of main interest is C'5 since this is the cluster where the ground truth rhythms
are. It is evident from the third column in Table 2] that the alINN network was
mostly able to capture the characteristics of the ground truth rhythms. The pure
LSTM rhythms (triangles), composed without using the conditional layer, are
mainly placed far away from the ground-truth cluster. This fact indicates that
the conditional layer does indeed contribute in the production of rhythms that
more accurately resemble the characteristics of the trained style; at the same
time, those rhythms have relatively diverse characteristics, which is evident by
the dispersion in C5. Therefore, the use of the conditional layer is shown to
improve the efficiency of the network in capturing the characteristics of the
training rhythms, while the diversity of the produced rhythms is preserved.

4.3 Examining the role of the conditional layer

To examine the role of the conditional layer, a new version of the 3 out of
the 6 ground truth rhythms was produced by the first author of this work,
with the bass being modified. The modification in all 3 cases was mild and
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Fig.3: Two-dimensional mapping of the features of all network compositions
with and without (circumscribed by triangles) the conditional layer. The ground-
truth features mapping is illustrated with “x”s. Coloring is based on k-means
clustering with 5 clusters.

Table 2: The six most common labels in each cluster in Figure [2| along with the
numbers of their occurrences.
Ci Co Cs Cy Cs

QueenNN: 29| epochb: 13| allNN: 24| epoch30: 21| allNNno: 18
epochb: 19| epochl0: 13|epoch20: 17| epoch20: 19|FloydNNno: 18
allNN15: 18| FloydNNno: 13|epoch25: 16| epoch15: 17| epoch25 17
epoch10: 17| allNN15no: 11|epochl0: 15| PTNN: 16| PTNNno: 15
FloydNN: 16/QueenNNno: 9 | epoch5: 14|FloydNN: 15| epoch30: 13
epoch25: 15| epoch30: 4 |epochl5: 13|PTNNno: 14| epoch20: 11

compatible with the style/original version of each piece. The modifications in the
bass were expected to affect the system when composing, since the conditional
layer changes. The influence of the changes in the bass are illustrated in Figure [4]
where the features of all 16 bars of the rhythms were reduced to 2 dimensions.
The coloring is again the result of clustering with the k-means with 5 clusters,
while the rhythms in circles are the ones composed with the use of the modified
bass in the conditional layer.

The most common keywords in each cluster (composing network and epoch of
training) are show in Table The cluster of interest is C's where the ground truth
rhythms are included. Again the alINN has the strongest presence in this cluster,
a fact that, combined with the findings in Table |2 indicates that more training
data (alINN is trained with 3 times as much data as all other networks) lead to
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Fig. 4: Two-dimensional mapping of the features of all network compositions with
original and modified bass (circumscribed by circles). The ground-truth features
mapping is illustrated with “x”s. Coloring is based on k-means clustering with
5 clustes.

the generation of rhythms that are closer to “real rhythms” of the learned style.
Additionally, the presence of circled rhythms (composed with modified bass in
the conditional layer) within this cluster indicates that the proposed system does
not get “lost” when presented alternative scenarios and continues to compose
rhythms that are close to “real rhythms” (ground truth). It should be noted that
the evaluation of the rhythms composed with the modified bass are different from
the ones composed with the original bass — i.e. the circled rhythms are not on
top of non-circled rhythms. Therefore, the modifications in the bass potentially
affect the network, but in a way that appears to be meaningful.

Table 3: The six most common labels in each cluster in Figure |3 along with the
numbers of their occurrences.
(o C> Cs Cy Cs

FloydNN: 19| alINN15: 19| alINN: 34|QueenNN: 30(alINN15: 16
PTNN: 16{QueenNN: 12| PTNN: 20| FloydNN: 19|epoch10: 11
epoch30 13| epoch20: epoch25: 16| epoch5: 15| PTNN: 11
epoch20: 12| epochl0: epochb: 14| epoch30: 11|epochlb: 7

epochl5: 12| FloydNN: epochl0: 14| epoch25: 11| epoch5: 6

allNN: 8 | epochb: epoch20: 12| epoch10: 10|epoch30: 6




5 Conclusions

In this work, we introduced an innovative architecture approach for creating
drum sequences. The proposed Neural Network consists of a Recurrent module
with LSTM layers which learns sequences of consecutive drum events and a Feed
Forward Layer which takes information on the metrical structure and the bass
movement.

Despite the few training data, the experiments showed promising results high-
lighting the importance of the Feed Forward Layer. LSTM systems without the
conditional layer learn and compose music regardless of given conditions. There-
fore, a drumming system that is based on a simple LSTM architecture does not
get affected by, e.g., potential changes in the bass, which is not the case with
human drummers.

Additionally, the preservation of a metrical structure in simple LSTM systems
is only dependent on their ability to learn the metric structure these are trained
on. The conditional layer enables the LSTM networks to simulate humans in
both tasks: respond to changes in other instruments (e.g. bass) and ”tune-in” to
certain metrical structures.

Our future work will include the extension of the available training data,
along with the expansion of network architecture with additional Feed Forward
Layers featuring other rhythm instruments (e.g. guitar) or rhythm information.
Finally more experiments will be conducted to test the system’s behavior in
metrical structures not trained on (e.g. 15/8) as well as how the accentuation
patterns can be represented and learned.
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